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Abstract

In this work a numerical investigation has been performed to examine the characteristics of mixed convective heat transfer in square
enclosures undergoing orthogonal rotation i.e. rotation axis and gravity axis are orthogonal to each other. A semi implicit finite differ-
ence code on a collocated grid is used to solve the momentum and energy equations subject to Boussinesq approximation. The study is
carried out for a wide range of operating parameters such as Rayleigh number (Ra), Taylor number (7a), Rotational Rayleigh number
(Ray,) for a fixed Prandtl number (Pr). The numerical experiments have been carried out for a fixed Pr = 0.01, Ra varies from 10° to 107
while Ta and Ra,, vary from almost 0 to 10°. Results reveal that significant increase or decrease in heat transfer rates can be achieved by

the rotational effects, mainly influenced by centrifugal force.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The effect of cavity rotation on flow stability as well as
heat transfer is particularly very important concerning
the flow of liquid metals inside a cavity, which is the stan-
dard material for the manufacture of single wafer crystals
in the semiconductor industry. Though a vast amount of
work, both theoretical and experimental, exists in the open
literature related to heat and mass transfer in rotating ducts
[1-4] for cases of either air and water, yet little or no work
has been done, for low Prandtl number fluids especially in
configurations like square ducts undergoing orthogonal
rotation.

Some of the results pertaining to either air and water in
rotating ducts, channels etc. are summarised herewith. Ngu-
yen et al. [5] have shown that the effect of counter rotating
the cavity results in growth of good quality crystals. Maha-
devappa et al. [6] found that the heat transfer is more effi-
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cient in elliptical geometry ducts, rotating about a parallel
axis situated parallel to and away from the central axis, then
in rectangular ducts under similar operating conditions.
Mixed convection heat and mass transfer have been studied
by Lee et al. [7] considering uniform temperature and con-
centration conditions along the porous duct walls. They
concluded that the combined thermal and solutal buoyan-
cies enhance the heat and mass transfer rate along the wet-
ted wall. Theoretical and experimental examination of the
effect of Coriolis force on the flow structures for adiabatic
rotating channels was performed by Hwang and Jen [§]
and it was found that at low rotation rates, a double vortex
secondary flow appears in the transverse plan of the channel
while at large rotation rates, an instability occurs in the
form of longitudinal rolls in the interior of the channel.
Fann and Yang [9] studied the effect of centrifugal buoy-
ancy on the fluid flow and heat transfer characteristics in
radially rotating channels for steady laminar flow and they
came to the conclusion that the Coriolis force causes the
generation or decay of one or multiple pairs of transverse
velocities. Turbulent heat convection with fully developed
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Nomenclature

AR L aspect ratio

C [; ecific heat at constant pressure kI
P p p "kegK

CEF  centrifugal force, RayPro/X> + Y?

Coriolis force, Pry/ Ta(U* + V?)
g magnitude of acceleration due to gravity, rs—r}
H depth of fluid layer, m

i, ] indices in the X and Y directions
width of fluid layer, m
Nu space-averaged Nusselt number
Pm motion pressure, m
P, dimensionless motion pressure
Pr Prandtl number,
agH?AT

Ra Rayleigh number,

VK

Ra,,  rotational Rayleigh number, w

t dimensionless time

T dimensional temperature, K

4Q:H*

Ta Taylor number, —5%

TBF  thermal buoyancy force, RaPr0

v (u,v) dimensional velocity field in x and y direc-
tions, 11

v (U, V) dimensionless velocity field in X and Y
directions

X,y dimensional coordinate, m
X, Y dimensionless coordinate

Greek symbols

o coefficient of thermal expansion, K~
AT temperature difference between hot and cold
walls
T dimensional time, s
0 non-dimensional temperature, TA’TT°
K thermal diffusivity, Hle
. kg
o density, =
Po reference density
y kinematic viscosity, mTZ
Q4 dimensional speed of rotation, @
Q non-dimensional rotation speed, Qg4 (”72)
Subscripts
c cold wall
h hot wall
m motion
0 reference
L perpendicular

velocity and temperature fields was studied by Mori et al.
[10]1in a circular pipe rotating around an axis perpendicular
to its own axis. They found that the increase of Nusselt
number is not significant for turbulent regions of the flow
as compared to laminar regions. Yan [11] numerically stud-
ied the characteristics of laminar mixed convection in rect-
angular ducts rotating about a parallel axis with water film
evaporation along the porous ducts walls and concluded
that heat and mass transfer is enhanced because of the for-
mation of secondary vortices in the duct.

Song et al. [12], studied the fluid flow and heat transfer
model for high speed rotating heat pipe, with substantial
centrifugal accelerations. They found that the natural con-
vection in the liquid film becomes more significant at higher
accelerations and fluid loadings. Yang and Wang [13] stud-
ied the bifurcation structure and stability of combined free
and forced convection in a rotating curved duct of square
cross-section. Results showed that as the relative strength
of buoyancy force decreases, temporal oscillations change
from periodic to non-periodic and finally chaotic. Ker and
Lin [14] in their study have emphasized that the study of
flow behavior for case of liquid metals in rotating cavities
needs further investigation. The major difference between
flow of liquid metals to comparatively larger Prandtl num-
ber fluids such as air, is that the former fluids have higher
density and hence are subjected to large centrifugal forces
per unit volume as compared to the latter.

The principal motivating factor to study this complex
flow of rotating liquids metals is due to the scarcity of lit-
erature available pertaining to this configuration, to the
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Fig. 1. Schematic diagram of a square enclosure showing boundary
conditions and location of spatial points (a), (b) and (c).
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best of our knowledge. The present analysis takes into
account both the Coriolis and centrifugal forces combined
with thermal buoyancy in order to analyse their effects on
dynamics of flow and heat transfer.

2. Mathematical formulation

The schematic diagram of the physical system under
investigation is depicted in Fig. 1. Initially at time 7 <0,
the liquid inside the enclosure is rotating anti-clockwise
as a solid body at a constant angular speed €2, and is iso-
thermal at temperature 7,. At time t > 0, the vertical
side-walls are suddenly raised and lowered to uniform tem-
peratures Ty, = Ty + AT/2 and T.= T, — AT/2 while the
top and bottom walls are thermally insulated. Thus, the
liquid metal inside the cavity is simultaneously subjected
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to thermal and rotational buoyancy forces. By assuming
the Boussinesq approximation in both the gravitational
and centrifugal forces, the thermal, centrifugal and Corio-
lis forces acting on the flow are respectively, equal to
pogou T — T()), —p()O((T — T())Qd X QqXr and —2,0()Qd x V.
As the gravity, centrifugal and Coriolis forces all lie
within the cross-sectional plane of the cavity and on further
assuming a long square duct thereby neglecting the
end-effects of 3D cavity flow, the problem can be analysed
as a two-dimensional flow problem. Thus it is felt that two-
dimensional calculations provide a good platform for
understanding the basic flow dynamics and the roles played
by the time-varying gravitational buoyancy, rotational
buoyancy and Coriolis forces in affecting the flow struc-
tures. Due to Boussinesq approximation the problem and
consequently the results are valid for configurations which
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Fig. 2. (a), (b) and (c) show streamline contours while (d), (e) and (f) show isotherm contours at different time instants for Ra = 107, Ta = 8.16 and

Ray, = 1.02x 102
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Fig. 3. (a) and (b) show time history while (c) and (d) show power spectrum of horizontal velocity component (U) and temperature (6) at spatial point (a)
for Ra=10", Ta =8.16 and Ra,, = 1.02 x 10°.
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Fig. 4. Depicts spatial variation of (a) Coriolis force, (b) centrifugal force, (c) thermal buoyancy force at t = 0.4 and (d) variation of Nusselt number with
time for Ra =107, Ta = 8.16 and Ra,, = 1.02 x 10%.
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have small AT and small scale heights compared to the
large-scale geophysical systems.

The governing equation of mass, momentum and energy
can be expressed in the dimensional form for 2D incom-
pressible flow as follows:

Ou %_

- =0 1
6x+6y (1)
D 190 .
- ﬂ+oc(T— To)g sin Qqt + vWu + 2Qqv
Dz Py Ox

— Q(zloc(T— To)x (2)
Dv 1 op,
D= _,0_0 %+ (T — To)g cos Qut + VW — 2Qqu

— QT — To)y (3)
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where

% =— % + po22x — pog sin Qut

% =— 2—5 + pijy — Pog COs 247 (4)
[I)T: =kV°T

No-slip boundary conditions are imposed for the velocity
components at all the walls. 7T'is assumed to satisfy thermally
conducting boundary conditions at the vertical side walls,
while Neumann boundary conditions & = 0 are assumed
for the horizontal top and bottom walls as shown in Fig. 1.

On performing non-dimensionalization using reference
length, velocity,

K

time and pressure scales as H, j,
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Fig. 5. (a), (b) and (c) show streamline contours while (d), (e) and (f) show isotherm contours for different time instants for Ra = 107, Ta = 8.16 x 10* and

Ray, = 1.02x 10°.
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Fig. 6. (a) and (b) show time history while (c) and (d) shows power spectrum of horizontal velocity component (U) and temperature () at spatial point (a)

for Ra =107, Ta = 8.16 x 10* and Ra,, = 1.02 x 10°.
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Fig. 7. Depicts spatial variation of (a) Coriolis force, (b) centrifugal force, (c) thermal buoyancy force at = 0.4 and (d) variation of Nusselt number Nu

with time for Ra = 107, Ta =8.16 x 10* and Ra,, = 1.02 x 10°.
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2 2 . . . e
L and L7 respectively, the governing equations, initial

and boundary conditions, become
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In Eq. (8) we have neglected viscous dissipation and

pressure work due to incompressibility of the flow.
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and hot walls has been calculated using the relation
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=2y 9)

The numerical scheme used to solve the equations has
been explained in detail in Hasan and Baig [15]. In this
scheme, the non-linear convective terms in Eqs. (6)—(8)
have been evaluated using third-order accurate upwind
scheme in the interior with first-order upwind scheme near
the walls. The viscous diffusion terms are discretized using
the three-point central differencing stencil, while time inte-
gration has been performed explicitly using Adam-Bash-
forth second-order accurate scheme in order to capture
the unsteady physics associated with the oscillatory flow
regime. A non-uniform collocated mesh of 71 x 71 grid
point has been generated, with the minimum spacing of
0.002 near the walls and maximum spacing of 0.046 near
the center of the cavity. The mass continuity has been
enforced by solving Poisson equation for pressure, using
Strongly Implicit Procedure (SIP), as implemented in [17]
with a significantly small L,-norm tolerance limit of 10~°.

Regarding grid-independence, we simulated the flow on
a grid of 91 x 91 keeping the location of first grid point
constant and found that the integral parameters such as
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mean Nu number changed by less than 3% while qualitative
change in spatial patterns remains is insignificant. Hence in
order to cut down the computational time, we ran all our
simulation cases on a coarser grid of 71 x 71. We have con-
sidered three spatial points (a), (b) and (c) having coordi-
nate locations (X, Y)=(—0.4933,-0.4933), (—0.2816,
—0.2816) and (0.372,0.372) on which temporal history of
several dynamical variables has been recorded.

2.1. Validation

The numerical code developed has been validated by
solving the glazing problem i.e. buoyancy driven flow

Table 1

Validation of code with numerical results of Nonino and Croce [16]

Ra | ¥ max] | Unax| | Vimax] Nutyye Reference

10° 9.652 35.668 68.367 4.483 Present

10° 9.618 34.749 68.646 4.521 Benchmark [16]
10 16.948 65.589 221.488 8.749 Present

10° 16.817 64.827 220.630 8.825 Benchmark [16]
107 30.638 145.460 697.669 16.284 Present

10’ 30.165 148.590 699.670 16.522 Benchmark [16]
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Fig. 9. (a) and (b) show time history while (c) and (d) show power spectrum of horizontal velocity component (U) and temperature (0) at spatial point (a)

for Ra=10", Ta=8.16 x 10° and Ra,, = 1.02 x 10%.



3508

inside a square cavity with differentially heated vertical
walls and horizontal adiabatic walls. The results have been
compared with the benchmark solutions of Nonino and
Croce [16]. The range of Ra considered is between 10°
and 107 while Pr is taken to be 0.71. Table 1 shows the
comparison between the results of present study and
benchmark solution. The minimum and maximum grid
spacing employed was 0.004 and 0.048 respectively, with
total number of grid points being equal to 55, in both spa-
tial directions as in the benchmark study. The maximum
percentage error in |¥max|, |Umax|s |Vmax| and Nuy,,, are
respectively equal to 1.568%, 2.106%, 0.406% and 1.440%
respectively.

3. Results and discussion
3.1. Effects of increasing centrifugal and Coriolis forces

In order to analyse the effects of increasing centrifugal
and Coriolis forces, we have performed several runs of

the code with increasing rotational speed €, keeping the
Ra =107 as constant.
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For Ra =10 at low rotational speeds (7a = 8.16 and
Ra,, = 1.02 x 10%), corresponding to non-dimensional rota-
tion Q =0.014, the thermal buoyancy is the dominating
force and this is also evident from Fig. 2 which shows
multi-cellular roll pattern of stream function. The isotherms
show thin boundary layers near isothermal walls with stable
stratification of the core. The dynamical variables U and 0
in Fig. 3 exhibit a chaotic time-signal at both the co-ordi-
nate points (a) and (b). The corresponding power spectrum
too exhibits a broad range of frequencies at both coordinate
points (a) and (b). These features characterize a strong tur-
bulent flow in the cavity. The spatial distribution of forces
in Fig. 4 shows thermal buoyancy is the dominating force
compared to smaller magnitudes of Coriolis and centrifugal
forces. From Fig. 4(d), it is clear that spatially averaged Nu
shows oscillatory heat transfer at both the walls with a tem-
poral mean value of 8.5 approximately.

As the rotational speed is increased corresponding to
non-dimensional Q =1.428 (Ta=8.16x 10* and Ra,, =
1.02 x 10%), the stream functions in Fig. 5 again show
formation of multiple rolls of slightly larger magni-
tude compared to the previous case. The isotherms depict
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Fig. 10. Shows spatial variation of (a) Coriolis force, (b) centrifugal force, (c) thermal buoyancy force at = 0.4 and (d) variation of Nusselt number Nu

with time for Ra = 107, Ta = 8.16 x 10° and Ra,, = 1.02 x 108.
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beginning of unstable stratification in the core signifying
increase in convective motion in the core of the cavity.
The dynamical variables U and 0 in Fig. 6 exhibit chaotic
time-signal trace at all and the power spectra reinforce that
view. The spatial variation of forces show (Fig. 7) stronger
Coriolis and centrifugal forces near the walls but still their
magnitude is quite small compared to thermal buoyancy
force. From Fig. 7(d), it is clear that Nu shows oscillatory
heat transfer at the walls with the mean value around
5.0. Hence the heat transfer at both the walls is appreciably
reduced due to 100-fold increase in Q as compared to the
previous case.

Further 10-fold increase of rotation corresponding to
Q=14.285 (Ta = 8.16 x 10° and Ra,, = 1.02 x 10%), results
in drastic change in pattern formation of stream functions
rolls as is evident in Fig. 8(a)—(c). These figures show for-
mation of counter-rotating rolls which occupy whole of

Level  PSi
15 -0.272903
14 -0.631976
13 -0.991049
12 -1.35012
11 -1.7092
10 -2.06827
9  -2.42734
-2.78641
-3.14549
-3.50456
-3.86363
-4.22271
-4.58178
-4.94085
-5.29993

— N WA L%

Level  PSi
15 -0.413494
14 -0.857927
13 -1.30236
12 -1.74679
11 -2.19123
10 -2.63566
9  -3.0801
-3.52453
7 -3.96896
6 -4.4134
5 -4.85783
4 -5.30226
3 -5.7467
2 -6.19113
1 -6.63557

Level  PSi

15 -0.413862
14 -0.866205
13 -1.31855
12 -1.77089
11 -2.22323
10 -2.67557
9 -3.12792
8  -3.58026
7 -4.0326
6 -4.48494
5 -4.93729
4 -5.38963
3 -5.84197
2 -6.29431
1 -6.74666

0.4

-0.5 -0.25 0 0.25 0.5

X
(©)t=0.80

the enclosure. These rolls are primarily formed due to the
action of centrifugal force on the fluid. Isotherms in
Fig. 8(d)—(f) show generation of mushroom-shaped struc-
ture in the core of the cavity which leads to strong unstable
stratification of the core. The time history in Fig. 9 depicts
a stronger turbulent time-signal at all the co-ordinate
points while the corresponding power spectra show an
increase of two to three times more power than the previ-
ous case. Fig. 10(a)—(c) shows that in the core of the cavity
centrifugal and Coriolis forces are more dominant espe-
cially there is large magnitude of centrifugal force from
centre of hot wall towards the cold wall which leads to for-
mation of mushroom-shaped isotherms. Fig. 10(d) shows
unsteady almost cyclic heat transfer at the walls. The min-
ima correspond to the time interval when thermal buoy-
ancy is dominant while the maxima correspond to the
duration when centrifugal force is the dominating force.
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Fig. 11. (a), (b) and (c) show streamline contours while (d), (e) and (f) show isotherm contours for different time instants for Ra = 10°, Ta = 8.16 x 10* and

Ra,, = 1.02x 10%.
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Fig. 12. Depicts spatial distribution of (a) Coriolis force, (b) centrifugal force, (c) thermal buoyancy force at = 0.4 and (d) variation of Nusselt number
Nu with time for Ra = 10°, Ta = 8.16 x 10* and Ra,, = 1.02 x 10,
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Fig. 13. (a) and (b) show time history while (c) and (d) show power spectrum of horizontal velocity component (U) and temperature () at spatial point (a)
for Ra=10° Ta=8.16 x 10* and Ra,, = 1.02 x 10°.
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Fig. 14. Shows spatial distribution of (a) Coriolis force (b) centrifugal force (c) thermal buoyancy force at t = 0.4 and (d) variation of Nusselt number Nu

with time for Ra = 10°, Ta = 8.16 x 10* and Ra,, = 1.02 x 10°.

3.2. Effects of increasing thermal buoyancy force

These simulations have been performed keeping the
non-dimensional rotational speed Q = 1.428 (Ta = 8.16 X
10* and Ra,, = 1.02 x 10%) constant while the Ra is varied
from 10° to 107. For the case when Ra = 10°, the stream
functions exhibit a single clockwise roll almost occupying
the whole cavity as shown in Fig. 11. The corresponding
isotherms depict thick boundary layers near the isothermal
walls with stable stratification in the core of the enclosure.
The time history depicts steady flow at all the co-ordinate
points with the power density spectrums further corrobo-
rating that view. The spatial variation of forces in
Fig. 12(a)—(c) show thermal buoyancy as the main domi-
nating force. From Fig. 12(d) it is clear that Nu shows
steady heat transfer at the walls with a value of 2.8.

Further increase of Ra to 10° for same @ as in the pre-
vious case, results in stream function rolls becoming more
stronger but the the overall pattern remains the same. The
isotherms show a comparably thinner thermal boundary
layer near the walls and also there is onset of convective
motion in the core of the cavity. The time history of veloc-
ity component U as well as temperature 6 in Fig. 13 depicts
a quasi-periodic time signal at all the spatial points. The
power spectra show quasi-periodicity with a fundamental
frequency and two to three sub-harmonics at all the coor-

dinate points. Fig. 14 shows the spatial variation of forces
which still exhibits the domination of thermal buoyancy
force with the centrifugal force getting stronger in the core
of the cavity. From Fig. 14(d) it is clear that Nu shows
oscillatory heat transfer at the walls with a mean value of
4.0 approximately.

3.3. Heat transfer analysis

The plots (a) and (b) in Fig. 15 shows the effect on heat
transfer at fixed Ra = 107 as rotational speed Q is increased
slightly from 0 to 0.014. From these plots it is apparent that
there is no effect on magnitude of Nu. Fig. 15(c) shows that
at Q=1.428, the magnitude of Nu has appreciably
decreased to a mean value of around 7.0. Further increase
of Q to 14.285 results in significant change in Nu variation
with time. The possible source of almost cyclic rise and fall
of Nu is due to alternate domination of thermal buoyancy
and centrifugal forces. As  is increased further to a large
value of 71.428, the Nu shows an appreciable rise to a mean
value around 16.0.

These change can be explained that at lower to medium
rotational speeds there is disruption of heat transfer by
opposing interaction of thermal and rotational buoyancy
which results in decrease of Nu. For rotational speeds lar-
ger than a critical speed, the heat transfer is governed by
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Fig. 15. Variation of Nu for different 7a and Ray, at Ra = 107: (a) Ta = 0, Ray, = 0; (b) Ta = 8.16, Ray, = 1.02 x 10% (¢c) Ta = 8.16 x 10*, Ray, = 1.02 x 10°;
(d) Ta=8.16x10°, Ra,, = 1.02x 10% and (e) Ta = 2.04 x 10%, Ra,, = 2.55 x 10°.

centrifugal forces and occurs not through the boundary 1. Increase in the thermal buoyancy force with increasing Ra

layers but by the mushroom-shaped structure and hence generates thinner boundary layers which in turn increases
there is rise of Nu. heat transfer at the isothermal walls of the cavity.
2. Primary roll pattern changes into a multi-cellular roll
4. Conclusions pattern as Ra is increased keeping Q2 constant.
3. At higher value of Q i.e. at larger values of T« and Ra,,,
The following conclusions can be derived on basis of the two horizontally aligned counter-rotating rolls are

numerical experiments: obtained. This leads to generation of mushroom-shaped
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structure isotherms in the core of the cavity with unsta-
ble thermal stratification.

4. This significantly higher strength of counter-rotating
rolls generated by the centrifugal force in the core of
the cavity lead to enhanced heat transfer.

5. At the rotational speed 2 = 14.285 there is alternate
domination of centrifugal and thermal buoyancy forces
and this results in almost periodic variation of Nusselt
number with time.

6. At very high rotational speeds corresponding to the case
Q =71.428, there is a significant increase in Nusselt
number which is primarily due to domination of centrif-
ugal force.
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